
Robotics System Toolbox™ Release Notes

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Robotics System Toolbox™ Release Notes
© COPYRIGHT 2015–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

R2022a

Robot Scenarios and Sensor Models: Author robot scenarios and simulate
sensor readings for robotics applications . 1-2

Inverse Kinematics Designer: Design inverse kinematics solvers,
configurations, and waypoints . 1-2

Convert Collision Mesh: Convert primitive collision objects to collision
mesh . 1-3

Kinematic Constraints: Additional Generalized Inverse Kinematics
Constraints . 1-3

INS Sensor Model: Simulate inertial navigation and GPS readings 1-3

GPS Sensor Model: Simulate GPS receiver readings 1-3

Trajectory and Waypoint Following Algorithm: Use built-in algorithm to
generate trajectories and control commands for robots 1-3

Transform Tree Object: Define coordinate frames and relative
transformations . 1-3

Point Cloud Object: Store 3-D point clouds . 1-3

Trajectory Generation Blocks: Create minimum jerk and minimum snap
polynomial trajectories with Simulink . 1-4

Commercial Robot Models: Universal Robots E-Series models introduced
to the library of robot models . 1-4

Simulation 3-D Environment Upgrade: Gazebo 11 support 1-4

New Examples . 1-4

R2021b

State Space and State Validation for Robot Manipulator Models 2-2

Ignore Self Collisions for Manipulator RRT Path Planning 2-2

iii

Contents

Minimum Jerk and Snap Polynomial Trajectories . 2-2

Simulation Description Format (SDF) Support . 2-2

COLLADA Mesh Support . 2-2

Load Robot Function Update . 2-2

R2021a

Workspace Regions For Motion Planning: Specify a workspace region to
sample end-effector poses for path planning . 3-2

Gazebo Co-Simulation in MATLAB: Access and modify Gazebo model
parameters . 3-2

Educational Robot Model: Additional rigid body tree robot model for
manipulator introduced to the library of robot models 3-2

Rigid Body Tree Visualization Improvements . 3-2

Rigid Body Tree Function Generation . 3-3

R2020b

RRT Planner for Manipulators: Plan collision-free motion for rigid body
tree robot models . 4-2

Collision Checking for Robot Meshes: Add collision meshes to rigid body
tree models and check collisions for robot configurations 4-2

Custom Messages with Gazebo: Publish and subscribe to custom message
types in a Gazebo simulation . 4-2

Joint and Link States in Gazebo: Send and receive messages for robot
joint and link states in a Gazebo Simulation . 4-2

Analytical Inverse Kinematics: Generate functions for inverse kinematics
solutions using closed-form solutions . 4-2

Educational and Commercial Robot Models: Additional rigid body tree
robot models for manipulators and mobile robots introduced to the
library of robot models . 4-3

Robotics System Toolbox UAV Libraryadd-on is now the UAV Toolbox . . . 4-3

iv Contents

Robotics System Toolbox Support Package for Manipulators Add-on 4-3

R2020a

Interactive Robot Visualization: Manipulate rigid body tree models with
visual meshes and perform inverse kinematics for target bodies 5-2

Commercial Robot Models: Load additional rigidBodyTree robot models
for manipulators and mobile robots added to our library of existing
models . 5-2

Code Generation for Collision Checking: Generate C/C++ code using the
checkCollision function and collision geometries 5-2

Simscape Multibody Model Parameters: Import models with initial
position and joint limits . 5-2

R2019b

Gazebo Co-simulation: Perform time-synchronized simulation of Gazebo
with Simulink . 6-2

Robot Motion Modeling and Simulation: Simulate mobile robot
kinematics and closed-loop manipulator dynamics 6-2

Collision Checking: Define collision shapes and detect collisions between
mesh geometries . 6-2

Commercial Robot Models: Use a provided library of rigid body robot
models to quickly model your robot applications 6-3

Robot Application Examples: Get started with reference examples for
pick-and-place robots and warehouse mobile robots 6-3

Robotics System Toolbox Support Package for Turtlebot-Based Robots
functionality has moved . 6-3

Robotics System Toolbox has transitioned into Robotics System Toolbox,
Navigation Toolbox, and ROS Toolbox . 6-3

v

R2019a

SLAM Map Builder Sessions: Save and load app sessions 7-2

MAVLink Protocol Support: Communicate with UAVs using MAVLink
messages and load log files . 7-2

Trajectory Generation: Create piecewise polynomials, trapezoidal velocity
profiles, B-splines, and task-space interpolation 7-2

Model Reference Support for ROS: Use model reference in models with
ROS Blocks . 7-2

Orbit Follower for UAVs: Follow a circular path around a point of interest
. 7-2

Code Generation for SLAM: Generate code using LidarSLAM, PoseGraph,
and PoseGraph3D objects . 7-2

R2018b

SLAM Map Builder App: Build and tune a 2-D grid map with lidar-based
SLAM . 8-2

UAV Algorithms: Create UAV guidance models and 3-D path following for
fixed-wing and multirotor UAVs . 8-2

Read Data Block: Play back data from a rosbag logfile in Simulink 8-2

Inverse Kinematics Block: Calculate joint configurations for a desired
end-effector pose in Simulink . 8-2

ROS Service and Current Time Blocks: Call ROS services and get the
current ROS time in Simulink . 8-2

Simscape Multibody Data Exchange: Use importrobot to import Simscape
Multibody models to a RigidBodyTree object. 8-3

Ground Vehicle Motion Primitives: Generate paths using Dubins, Reeds-
Shepp, and straight-line connections . 8-3

R2018a

Manipulator Algorithm Blocks: Compute rigid body tree kinematics and
dynamics in Simulink . 9-2

vi Contents

Lidar-Based SLAM: Localize robots and build map environments using
lidar sensors . 9-2

Pose Graph Data Structure and Optimization: Represent and optimize 2-D
and 3-D pose graphs . 9-2

3-D Occupancy Maps: Map 3-D environments using efficient octree data
structure . 9-2

Enhanced Performance for rosbag Logfiles: Load rosbags faster and
extract message data as structures . 9-3

R2017b

RigidBodyTree Visualization Improvements: Attach mesh files and inspect
individual bodies in a MATLAB figure . 10-2

Coordinate Transformation Conversion Block: Convert between
coordinate system representations in Simulink 10-2

ROS Image and Point Cloud Blocks: Convert ROS messages to nonbus
signals in Simulink . 10-2

Lidar Sensor Object: Store and use lidar scan data 10-2

Scan Matching: New trust-region solver and code generation support
. 10-3

R2017a

External Mode Support: Tune parameters and view signal values of
deployed ROS nodes over TCP/IP (with Simulink Coder) 11-2

Dynamics for Robot Manipulators: Solve inverse and forward dynamics
for RigidBodyTree objects . 11-2

Generalized Inverse Kinematics: Solve multiconstrained inverse
kinematics for robot manipulators . 11-2

URDF File Importer: Import URDF robot descriptions as a RigidBodyTree
object . 11-3

Scan Matching: Calculate pose difference between laser scans 11-3

Code Generation for RigidBodyTree objects: Generate code with robot
manipulator data structures . 11-3

vii

rosparam Simplified Commands: Modify ROS parameters using a
simplified interface without creating a ParameterTree object 11-3

R2016b

Robotic Manipulator Algorithms: Represent robot manipulators using a
rigid body tree and calculate forward and inverse kinematics 12-2

Automated Deployment of ROS Nodes: Automatically deploy ROS nodes to
target hardware using Simulink Coder . 12-2

Occupancy Grid Class: Build a robot environment using a 2-D occupancy
map with probabilistic values . 12-2

Mobile Robot Algorithm Blocks: Perform obstacle avoidance and path
following in Simulink . 12-2

ROS Action Client: Send action goals via a ROS network and get feedback
on their execution . 12-2

Buffered ROS tf2 Transformations: Access time-buffered transformations
from the ROS transformation tree . 12-2

Odometry Motion Model Class: Predict poses for a differential drive robot
. 12-3

ROS Time and Duration: Use mathematical operations on ROS time and
duration objects . 12-3

Code Generation for Robotics Algorithms: Generate code for select
algorithms . 12-4

R2016a

Monte Carlo Localization Algorithm: Estimate robot location in a known
map . 13-2

Particle Filter Algorithm: Estimate state for nonlinear systems 13-2

Fixed-Rate Execution: Run MATLAB code at a constant rate 13-2

Robotics System Toolbox Support Package for TurtleBot based Robots:
Connect to TurtleBot hardware . 13-2

String support for ROS parameters in Simulink . 13-2

viii Contents

String array support for ROS messages in Simulink 13-2

Code generation from Simulink using Simulink Coder 13-3

roboticsSupportPackages function replaced with roboticsAddons 13-3

R2015aSP1

Bug Fixes

R2015b

Vector Field Histogram Plus (VFH+) obstacle avoidance algorithm 15-2

Access to ROS parameters from Simulink . 15-2

Code generation for coordinate transforms and select robotics algorithms
. 15-2

R2015a

Path planning, path following, and map representation algorithms . . . 16-2

Functions for converting between different rotation and translation
representations . 16-2

Bidirectional communication with live ROS-enabled robots 16-2

Interface to Gazebo and other ROS-enabled simulators 16-2

Data import from rosbag log files . 16-2

ROS node generation from Simulink models (with Embedded Coder)
. 16-2

ix

R2022a

Version: 4.0

New Features

Bug Fixes

Version History

1

Robot Scenarios and Sensor Models: Author robot scenarios and
simulate sensor readings for robotics applications
The robotScenario object generates a simulation scenario consisting of static meshes, robot
platforms, and sensors in a 3-D environment. Add robotPlatform objects to the scenario and attach
different sensor models with the robotSensor object. To specify complex mesh objects as
triangulated vertices and faces, use the extendedObjectMesh object. Add the mesh to robotic
scenarios using the addMesh function.

The robotPlatform object represents a robot platform in a given robot scenario. Use the platform
to define and track the trajectory of the base motion of a robot platform in the scenario. To simulate
sensor readings for the platform, mount sensors like the gpsSensor, insSensor, or
robotLidarPointCloudGenerator objects using the robotSensor object. Add a body mesh for
visualization using the updateMesh function.

The robotSensor object creates a sensor in a robot scenario. The sensor is rigidly attached to a
robot platform, specified as a robotPlatform object. You can specify different mounting positions
and orientations. Configure this object to automatically generate readings from a sensor specified as
a gpsSensor, insSensor, or robotLidarPointCloudGenerator object.

Inverse Kinematics Designer: Design inverse kinematics solvers,
configurations, and waypoints
Load rigidBodyTree objects into the Inverse Kinematics Designer app to visualize and tune an
inverse kinematics solver with or without kinematic constraints. Create, modify, and export joint
configurations as well as the solver by exporting to the MATLAB® workspace.

R2022a

1-2

Convert Collision Mesh: Convert primitive collision objects to collision
mesh
Use the convertToCollisionMesh function to convert collisionBox, collisionSphere, or
collisionCylinder objects into a collisionMesh object.

Kinematic Constraints: Additional Generalized Inverse Kinematics
Constraints
Use the joint constraint objects to constrain one rigid body using another rigid body on the same
rigidBodyTree object:

• constraintFixedJoint — Create a fixed joint constraint to fix the position and orientation
between two bodies.

• constraintPrismaticJoint — Create a prismatic joint constraint between two bodies to
simulate prismatic motion.

• constraintRevoluteJoint — Create a revolute joint constraint between two bodies to
simulate revolute motion.

Use the constraintDistanceBounds constraint object to constrain an end effector within a
specified minimum and maximum distance of another body on the same rigidBodyTree.

INS Sensor Model: Simulate inertial navigation and GPS readings
Use the insSensor object to simulate inertial navigation and GPS readings.

GPS Sensor Model: Simulate GPS receiver readings
Use the gpsSensor object to simulate GPS receiver readings based on position and velocity inputs.

Trajectory and Waypoint Following Algorithm: Use built-in algorithm to
generate trajectories and control commands for robots
Use the waypointTrajectory object to generate trajectories for sensors or robots and control
commands to send to your robots.

Transform Tree Object: Define coordinate frames and relative
transformations
The transformTree object contains an organized tree structure for defining coordinate frames and
their relative transformations over time.

Point Cloud Object: Store 3-D point clouds
The pointCloud object creates point cloud data from a set of points in a 3-D coordinate system. You
can retrieve, select, and remove desired points from the point cloud data.

1-3

Trajectory Generation Blocks: Create minimum jerk and minimum snap
polynomial trajectories with Simulink
Use the Minimum Jerk Polynomial Trajectory block to generate multi-axis, minimum jerk, polynomial
trajectories.

Use the Minimum Snap Polynomial Trajectory block to generate multi-axis, minimum snap,
polynomial trajectories.

Commercial Robot Models: Universal Robots E-Series models
introduced to the library of robot models
You can now retrieve these additional commercially available robots from the robot model library
using the loadrobot function:

• "universalUR3e"
• "universalUR5e"
• "universalUR10e"
• "universalUR16e"

The meshes for these robots are also available in the Robotics System Toolbox Robot Library Data
support package. See “Get and Manage Add-Ons” or Robotics System Toolbox Robot Library Data in
File Exchange.

Simulation 3-D Environment Upgrade: Gazebo 11 support
Gazebo co-simulation framework now supports Gazebo 11. In prior releases, the framework
supported only Gazebo 9 and Gazebo 10.

New Examples
This release contains several new examples:

• “Plan Manipulator Path for Dispensing Task Using Inverse Kinematics Designer”
• “Create Constrained Inverse Kinematics Solver Using Inverse Kinematics Designer”
• “Perform Path Planning Simulation with Mobile Robot”
• “Perform Obstacle Avoidance in Warehouse Scenario with Mobile Robots”
• “Solve Inverse Kinematics for Closed Loop Linkages”
• “Generate Code for Manipulator Motion Planning in Perceived Environment”
• “Design Position Controlled Manipulator Using Simscape”
• “Perform Trajectory Tracking and Compute Joint Torque for Manipulator Using Simscape”

R2022a

1-4

https://www.mathworks.com/matlabcentral/fileexchange/98714-robotics-system-toolbox-robot-library-data

R2021b

Version: 3.4

New Features

Bug Fixes

2

State Space and State Validation for Robot Manipulator Models
The manipulatorStateSpace object represents the joint configuration state space of a rigid body
tree robot model. For a given rigidBodyTree object, the nonfixed joints in the rigid body tree model
form the state space. The most common use of the manipulator state space is with sampling-based
path planners like the plannerRRT (Navigation Toolbox) and plannerBiRRT (Navigation Toolbox)
objects.

Use these features for customization of planning beyond what the manipulatorRRT object allows.

To sample and validate paths for manipulators, combine the state space with a state validator by
using the manipulatorCollisionBodyValidator object.

Ignore Self Collisions for Manipulator RRT Path Planning
The IgnoreSelfCollision property of the manipulatorRRT object determines whether or not to
check for self collisions when planning paths. If this property is set to true, the plan function skips
checking for collisions between bodies and only compares the bodies to the environment. Skipping
checking for self collisions can improve the speed of the planning phase.

Minimum Jerk and Snap Polynomial Trajectories
Use the minjerkpolytraj function to generate a minimum jerk polynomial trajectory. Specify
waypoints, time points, and number of samples to get a series of positions, velocities, accelerations
and jerks.

Use the minsnappolytraj function to generate a minimum snap polynomial trajectory. Specify
waypoints, time points, and number of samples to get a series of positions, velocities, accelerations,
jerks, and snaps.

Simulation Description Format (SDF) Support
The gzmodel function now returns the SDF of the specified Gazebo model as a string.

The importrobot function now imports an SDF model from an SDF file or an SDF text to MATLAB
as a rigidBodyTree object.

COLLADA Mesh Support
The rigidBodyTree object now supports COLLADA™ (*.dae) mesh files for collision checking and
visualizing a robot. In addition to existing STL 3-D mesh format, importrobot with URDF and SDF
models now supports the COLLADA DAE 3-D mesh format for mesh import.

Load Robot Function Update
The loadrobot function now supports multiple URDF versions for a robot model by specifying the
Version property. loadrobot("kinovaGen3","Version",2) will load the second URDF version
of the Kinova Gen 3.

R2021b

2-2

https://www.mathworks.com/help/releases/R2021b/robotics/ref/manipulatorstatespace.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2021b/nav/ref/plannerrrt.html
https://www.mathworks.com/help/releases/R2021b/nav/ref/plannerbirrt.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/manipulatorrrt.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/manipulatorcollisionbodyvalidator.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/manipulatorrrt.html#mw_266471a4-b06d-47a2-a05f-f37c0a7210fd
https://www.mathworks.com/help/releases/R2021b/robotics/ref/manipulatorrrt.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/manipulatorrrt.plan.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/minjerkpolytraj.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/minsnappolytraj.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/gzmodel.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/importrobot.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/importrobot.html
https://www.mathworks.com/help/releases/R2021b/robotics/ref/loadrobot.html

R2021a

Version: 3.3

New Features

Bug Fixes

3

Workspace Regions For Motion Planning: Specify a workspace region
to sample end-effector poses for path planning
The workspaceGoalRegion object defines a region for valid end-effector goal poses. To sample
poses within the bounds of the goal region, use the sample function. You can also visualize the
bounds you define using the show function.

The object is typically used with rapidly exploring random tree (RRT) planners like the
manipulatorRRT object. Specify your workspace goal region as the third input to the plan function.
Using the workspaceGoalRegion object, the planner can plan to multiple reachable goal end-
effector poses during planning and give collision-free paths.

Gazebo Co-Simulation in MATLAB: Access and modify Gazebo model
parameters
Use the following Gazebo co-simulation MATLAB functions to access and modify Gazebo model
parameters:

• gzinit — Initialize connection settings for Gazebo co-simulation in MATLAB
• gzjoint — Assign and retrieve Gazebo model joint information
• gzlink — Assign and retrieve Gazebo model link information
• gzmodel — Assign and retrieve Gazebo model information
• gzworld — Interact with Gazebo world

Educational Robot Model: Additional rigid body tree robot model for
manipulator introduced to the library of robot models
Load the "quanserQArm" robot model using the loadrobot function, which returns a
rigidBodyTree object of the manipulator.

Rigid Body Tree Visualization Improvements
The show function of the rigidBodyTree object supports faster update of the rigid body tree robot
model in the figure in a loop for fast animations. Enabling the 'FastUpdate' name-value argument

R2021a

3-2

https://www.mathworks.com/help/releases/R2021a/robotics/ref/workspacegoalregion.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/workspacegoalregion.sample.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/workspacegoalregion.show.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/manipulatorrrt.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/manipulatorrrt.plan.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/gzinit.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/gzjoint.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/gzlink.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/gzmodel.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/gzworld.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/loadrobot.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/rigidbodytree.show.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/rigidbodytree.html

increases the rate at which the robot model updates in the figure. You can loop the updates for a sped
up animation.

Rigid Body Tree Function Generation
Use the writeAsFunction function to generate a function file that creates the rigidBodyTree
object of the specified robot model. The generated function supports code generation.

3-3

https://www.mathworks.com/help/releases/R2021a/robotics/ref/rigidbodytree.writeasfunction.html
https://www.mathworks.com/help/releases/R2021a/robotics/ref/rigidbodytree.html

R2020b

Version: 3.2

New Features

Bug Fixes

4

RRT Planner for Manipulators: Plan collision-free motion for rigid body
tree robot models
The manipulatorRRT object enables you to plan paths for a rigidBodyTree robot model using the
bidirectional rapidly-exploring random tree (RRT) algorithm. Specify the collision geometries for the
rigidBodyTree object, a start and goal configuration, and any obstacles in the environment using
collision meshes. Use the plan function to generate a collision-free path from start to goal.

To find direct connections between the bidirectional trees, enable the ConnectHeuristic property
of the manipulatorRRT object, which ignores the maximum connection distance for extending the
tree.

To shorten the path length, use the shortenPath function, which finds random edges to trim from
the path.

Collision Checking for Robot Meshes: Add collision meshes to rigid
body tree models and check collisions for robot configurations
The rigidBodyTree object now supports adding collision meshes along with visual meshes by using
the addCollision object function. The checkCollision object function checks for self collisions
and collisions with the environment based on robot configurations and obstacle positions.

Custom Messages with Gazebo: Publish and subscribe to custom
message types in a Gazebo simulation
Use the Gazebo Publish and Gazebo Subscribe blocks to send and receive custom messages on
specific topics in a Gazebo simulation. Specify messages as a bus with the appropriate elements
based on your message type.

Joint and Link States in Gazebo: Send and receive messages for robot
joint and link states in a Gazebo Simulation
The Gazebo Blank Message block now generates commands for setting the position and velocity of
different joint and link elements of a Gazebo simulation as a bus. Select the message type in the block
mask, and assign the appropriate elements of the bus for your command. To send the commands, use
the Gazebo Apply Command block. To read states, use a Gazebo Read block configured for the topic
of the desired element.

Analytical Inverse Kinematics: Generate functions for inverse
kinematics solutions using closed-form solutions
The analyticalInverseKinematics object is an analytical inverse kinematics solver for a specific
rigidBodyTree robot model. The object supports kinematic group types for six or seven degree-of-
freedom (DoF) robots. Using the object, generate a function for your robot model and query solutions
based on a desired end-effector pose.

R2020b

4-2

https://www.mathworks.com/help/releases/R2020b/robotics/ref/manipulatorrrt.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/manipulatorrrt.plan.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/rigidbody.addcollision.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/rigidbodytree.checkcollision.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/gazebopublish.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/gazebosubscribe.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/gazeboblankmessage.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/gazeboapplycommand.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/gazeboread.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/analyticalinversekinematics.html
https://www.mathworks.com/help/releases/R2020b/robotics/ref/rigidbodytree.html

Educational and Commercial Robot Models: Additional rigid body tree
robot models for manipulators and mobile robots introduced to the
library of robot models
Load additional robot models using the loadrobot function, which returns a rigidBodyTree
object. To access these robot models, specify the associated string name for the robotname
argument of the loadrobot function

• "kukaIiwa14"
• "quanserQBot2e"
• "quanserQCar"
• "rethinkSawyer"

Robotics System Toolbox UAV Libraryadd-on is now the UAV Toolbox
The Robotics System Toolbox UAV Library add-on is now available as the UAV Toolbox.

Robotics System Toolbox Support Package for Manipulators Add-on
The Robotics System Toolbox Support Package for Manipulators add-on is new in this release for
connecting to KINOVA manipulator hardware.

To see available add-ons for Robotics System Toolbox, use the roboticsAddons function.

4-3

https://www.mathworks.com/help/releases/R2019b/robotics/ref/loadrobot.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/rigidbodytree.html

R2020a

Version: 3.1

New Features

Bug Fixes

5

Interactive Robot Visualization: Manipulate rigid body tree models
with visual meshes and perform inverse kinematics for target bodies
Create an interactiveRigidBodyTree object to launch a window displaying a rigidBodyTree
object and the attached visual meshes. You can directly modify the robot position and configuration
using interactive markers and see the results in the figure. Also, you can specify additional
constraints and inverse kinematics parameters in the object to further restrict the robot motion when
solving for configurations.

Commercial Robot Models: Load additional rigidBodyTree robot
models for manipulators and mobile robots added to our library of
existing models
Use commercially available robot models using the loadrobot function. Robot models are returned
as a rigidBodyTree object. Starting this release, new robot model options available include:

• "abbIrb1600"
• "abbYuMi"
• "atlas"
• "fanucLRMate200ib"
• "fanucM16ib"
• "frankaEmikaPanda"
• "robotisOP2"
• "robotisOpenManipulator"
• "universalUR10"
• "universalUR3"
• "universalUR5"
• "valkyrie"
• "yaskawaMotomanMH5"

Code Generation for Collision Checking: Generate C/C++ code using
the checkCollision function and collision geometries
You can now generate code when using checkCollision and the collision geometry objects
collisionBox, collisionCylinder, collisionMesh, and collisionSphere.

Simscape Multibody Model Parameters: Import models with initial
position and joint limits
When you import Simscape™ Multibody™ models using importrobot, the assembly initial position
is set to the home configuration of your rigidBodyTree model. Also, the joint limits are set in the
PositionLimits property of each rigidBodyJoint object.

R2020a

5-2

https://www.mathworks.com/help/releases/R2020a/robotics/ref/interactiverigidbodytree.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/loadrobot.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/checkcollision.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/collisionbox.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/collisioncylinder.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/collisionmesh.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/collisionsphere.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/importrobot.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2020a/robotics/ref/rigidbodyjoint.html

R2019b

Version: 3.0

New Features

Bug Fixes

Version History

6

Gazebo Co-simulation: Perform time-synchronized simulation of
Gazebo with Simulink
Gazebo is a physics-based simulator for testing and simulating robotics applications. Co-simulation
means synchronized time-stepping of your Simulink® model with the Gazebo simulation. Use the
Gazebo Pacer to control the pace of your model. To select entities, receive and send messages, or
apply commands, use the other provided Gazebo blocks:

• Gazebo Apply Command
• Gazebo Blank Message
• Gazebo Read
• Gazebo Select Entity

For examples using Gazebo co-simulation, see

• Perform Co-Simulation between Simulink and Gazebo
• Control A Differential-Drive Robot in Gazebo With Simulink

Robot Motion Modeling and Simulation: Simulate mobile robot
kinematics and closed-loop manipulator dynamics
Use provided motion models to simulate mobile robots and manipulator robot motion. Mobile robot
models include:

• ackermannKinematics object or Ackermann Kinematic Model block
• bicycleKinematics object or Bicycle Kinematic Model block
• differentialDriveKinematics object or Differential Drive Kinematic Model block
• unicycleKinematics object or Unicycle Kinematic Model block

Manipulator models support any rigidBodyTree model for both joint- and task-space kinematics:

• taskSpaceMotionModel object or Task Space Motion Model block
• jointSpaceMotionModel object or Joint Space Motion Model block

Collision Checking: Define collision shapes and detect collisions
between mesh geometries
Create collision meshes using either primitive shapes or custom mesh definitions with:

• collisionBox
• collisionCylinder
• collisionSphere
• collisionMesh

Check for collisions and calculate distances between meshes using the checkCollision function.
For examples using collision detection, see:

• Check for Manipulator Self Collisions using Collision Meshes

R2019b

6-2

https://www.mathworks.com/help/releases/R2019b/robotics/ref/gazebopacer.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/gazeboapplycommand.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/gazeboblankmessage.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/gazeboread.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/gazeboselectentity.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/perform-co-simulation-between-simulink-and-gazebo.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/control-a-differential-drive-robot-in-simulink-and-gazebo.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/ackermannkinematics.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/ackermannkinematicmodel.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/bicyclekinematics.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/bicyclekinematicmodel.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/differentialdrivekinematics.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/differentialdrivekinematicmodel.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/unicyclekinematics.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/unicyclekinematicmodel.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/rigidbodytree.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/taskspacemotionmodel.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/taskspacemotionmodelblock.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/jointspacemotionmodel.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/jointspacemotionmodelblock.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/collisionbox.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/collisioncylinder.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/collisionsphere.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/collisionmesh.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/checkcollision.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/check-for-manipulator-self-collisions-using-collision-meshes.html

• Check for Environmental Collisions with Manipulators

Commercial Robot Models: Use a provided library of rigid body robot
models to quickly model your robot applications
Use commercially available robot models using the loadrobot function. Robot models are returned
as a rigidBodyTree object. Robot models available include:

• KINOVA® Gen3
• KINOVA JACO®
• KINOVA MICO®
• ABB IRB 120
• Rethink Robotics Baxter
• Willow Garage PR2

For an example using the Gen3 robot, see Plan and Execute Collision-Free Trajectories using KINOVA
Gen3 Manipulator.

Robot Application Examples: Get started with reference examples for
pick-and-place robots and warehouse mobile robots
Reference examples for complete mobile robot and manipulator workflows are provided:

Pick-and-Place Manipulator Robots

• Plan and Execute Task- and Joint-space Trajectories using KINOVA Gen3 Manipulator
• Plan and Execute Collision-Free Trajectories using KINOVA Gen3 Manipulator
• Pick-and-Place Workflow using Stateflow for MATLAB

Warehouse Mobile Robots

• Plan Path for a Differential Drive Robot in Simulink
• Execute Tasks for a Warehouse Robot
• Control A Differential-Drive Robot in Gazebo With Simulink
• Simulate Different Kinematic Models for Mobile Robots

Robotics System Toolbox Support Package for Turtlebot-Based Robots
functionality has moved
Starting in R2019b, the Robotics System Toolbox Support Package for Turtlebot-Based Robots will no
longer be available for download. This functionality has been moved to ROS Toolbox Support Package
for TurtleBot -Based Robots.

Robotics System Toolbox has transitioned into Robotics System
Toolbox, Navigation Toolbox, and ROS Toolbox
Starting in R2019b, the Robotics System Toolbox has been transitioned to 3 products:

6-3

https://www.mathworks.com/help/releases/R2019b/robotics/examples/check-for-environmental-collisions-with-manipulators.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/loadrobot.html
https://www.mathworks.com/help/releases/R2019b/robotics/ref/rigidbodytree.html
https://www.kinovarobotics.com/en/products/robotic-arms/gen3-ultra-lightweight-robot
https://www.kinovarobotics.com/en/products/assistive-technologies/kinova-jaco-assistive-robotic-arm
https://www.kinovarobotics.com/en/knowledge-hub/all-kinova-products
https://new.abb.com/products/robotics/industrial-robots/irb-120
https://www.rethinkrobotics.com/
https://www.mathworks.com/help/releases/R2019b/robotics/examples/plan-and-execute-collision-free-trajectory-kinova-gen3.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/plan-and-execute-collision-free-trajectory-kinova-gen3.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/plan-and-execute-trajectory-kinova-gen3.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/plan-and-execute-collision-free-trajectory-kinova-gen3.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/pick-and-place-workflow-using-stateflow.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/plan-path-for-a-differential-drive-robot-in-simulink.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/execute-tasks-for-a-warehouse-robot.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/control-a-differential-drive-robot-in-simulink-and-gazebo.html
https://www.mathworks.com/help/releases/R2019b/robotics/examples/simulate-different-kinematic-models-for-mobile-robots.html
https://www.mathworks.com/help/releases/R2019b/supportpkg/turtlebotrobot/index.html
https://www.mathworks.com/help/releases/R2019b/supportpkg/turtlebotrobot/index.html

• Robotics System Toolbox
• Navigation Toolbox
• ROS Toolbox

Explore product capabilities for designing robotics applications, planning and navigation algorithms,
and ROS-based applications.

R2019b

6-4

https://www.mathworks.com/help/releases/R2019b/robotics/index.html
https://www.mathworks.com/help/releases/R2019b/nav/index.html
https://www.mathworks.com/help/releases/R2019b/ros/index.html

R2019a

Version: 2.2

New Features

Bug Fixes

7

SLAM Map Builder Sessions: Save and load app sessions
The SLAM Map Builder app now allows you to save and load app sessions. While building a map
and tuning SLAM parameters, your progress can be saved to a file. Load the session to return to the
same point in your map-building process.

MAVLink Protocol Support: Communicate with UAVs using MAVLink
messages and load log files
Use the MAVLink communication protocols in MATLAB and load specific MAVLink dialects. To load a
dialect, use mavlinkdialect. Connect to MAVLink clients and send and receive messages using
mavlinkio. You can also load telemetry logs (.tlogs) and use the data in MATLAB.

Trajectory Generation: Create piecewise polynomials, trapezoidal
velocity profiles, B-splines, and task-space interpolation
You can now generate multi-axis trajectories using new functions or blocks. Specify waypoints and
time-scaling vectors to get a series of accelerations, velocities, and positions using third-order (cubic)
polynomials, fifth-order (quintic) polynomials, B-splines, or trapezoidal velocity profiles. You can also
interpolate between rotations or transformations with a specified time-scaling vector.

Model Reference Support for ROS: Use model reference in models
with ROS Blocks
All ROS (Robot Operating System) blocks can now be used with model reference in Simulink.
Simulink models are still limited to one ROS node, so referenced models all contribute to a single
node at the top-level model. Execution modes that require host code generation (Accelerator and
Rapid Accelerator modes) do not support model reference.

Orbit Follower for UAVs: Follow a circular path around a point of
interest
The Orbit Follower block and uavOrbitFollower object allow you to follow a circular path around a
central point. Specify the center location and radius of the circular path to follow. The block uses the
current pose and look ahead distance and generates the desired heading ad yaw to achieve the
circular path.

Code Generation for SLAM: Generate code using LidarSLAM,
PoseGraph, and PoseGraph3D objects
You can now generate code when using robotics.LidarSLAM, robotics.PoseGraph, and
robotics.PoseGraph3D objects. The optimizePoseGraph function also supports code generation.

R2019a

7-2

https://www.mathworks.com/help/releases/R2019a/robotics/ref/slammapbuilder-app.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.lidarslam-class.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.posegraph.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/robotics.posegraph3d.html
https://www.mathworks.com/help/releases/R2019a/robotics/ref/optimizeposegraph.html

R2018b

Version: 2.1

New Features

Bug Fixes

8

SLAM Map Builder App: Build and tune a 2-D grid map with lidar-
based SLAM
Use the SLAM Map Builder app to import lidar scan and odometry data from a rosbag logfile or the
MATLAB workspace to build an occupancy grid map. The app utilizes the lidar-based SLAM
(simultaneous localization and mapping) algorithm to map the environment and localize the robot. To
improve map quality, the app also provides an easy user interface to tune the SLAM algorithm
parameters and manually modify individual incremental scans and loop-closure matches.

UAV Algorithms: Create UAV guidance models and 3-D path following
for fixed-wing and multirotor UAVs
Use a fixedwing or multirotor object to generate a reduced-order guidance model for fixed-wing
and multirotor UAVs (unmanned aerial vehicles). Use these functions with the guidance model:

• control — Control commands for UAVs
• derivative — Time derivative of UAV states
• environment — Environment inputs for UAVs
• state — UAV states for position, velocity, attitude, and thrust

The UAV Guidance Model block also contains these same guidance models for both UAV types.
Specify the UAV initial state, control commands, and the environmental conditions to get the
simulated UAV states from the block.

Use the Waypoint Follower block or the uavWaypointFollower System object™ to navigate a set of
waypoints using a lookahead point. You can specify your UAV type, a fixed or variable transition
radius, and control yaw at the waypoints.

Read Data Block: Play back data from a rosbag logfile in Simulink
The Read Data block loads rosbag logfile data into Simulink for playback in simulation. Messages are
played back at the simulation time corresponding to the recorded rosbag time. Specify the logfile,
time settings, and the desired topic to output.

Inverse Kinematics Block: Calculate joint configurations for a desired
end-effector pose in Simulink
Use the Inverse Kinematics block to calculate the joint configuration for a desired end-effector pose
in Simulink. Specify a robotics.RigidBodyTree object for your manipulator robot in MATLAB.
The block uses this model to generate valid joint positions and angles to achieve the desired end-
effector pose.

ROS Service and Current Time Blocks: Call ROS services and get the
current ROS time in Simulink
Use the Call Service block to call a ROS service in Simulink. Specify a service request message and
get a response from the service server. A valid ROS service server must be running on your ROS
network. You can also now generate blank service request and response messages using the Blank
Message block.

R2018b

8-2

https://www.mathworks.com/help/releases/R2018b/robotics/ref/slammapbuilder-app.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/fixedwing.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/multirotor.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.fixedwingguidancemodel.control.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.fixedwingguidancemodel.derivative.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.fixedwingguidancemodel.environment.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.fixedwingguidancemodel.state.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/uavguidancemodel.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/waypointfollower.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/uavwaypointfollower-system-object.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/readdata.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/inversekinematics.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/callservice.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/blankmessage.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/blankmessage.html

Use the Current Time block to get the current ROS or system time based on your ROS network
connection.

You can now run a deployed model based on the ROS time. Select the Enable ROS time model
stepping in the Model Configuration Parameters. Under Hardware Implementation, set
Hardware board to Robot Operating System (ROS), and select Enable ROS time model
stepping under Target Hardware resources > ROS time.

Simscape Multibody Data Exchange: Use importrobot to import
Simscape Multibody models to a RigidBodyTree object.
Use importrobot to import a Simscape Multibody model to MATLAB as a
robotics.RigidBodyTree object. The RigidBodyTree object supports rigid bodies with revolute,
prismatic, and fixed joints. Supported blocks are mapped to these components.

Ground Vehicle Motion Primitives: Generate paths using Dubins,
Reeds-Shepp, and straight-line connections
Use motion models for Dubins, Reeds-Shepp, and straight-line connections to generate path
segments. Specify the properties for the different motion models in the connection objects:

• robotics.DubinsConnection
• robotics.ReedsSheppConnection

Use the connectconnect function to create valid path segments between poses:

• robotics.DubinsPathSegment
• robotics.ReedsSheppPathSegment

You can then interpolate poses along the path segment or visualize it using showshow.

8-3

https://www.mathworks.com/help/releases/R2018b/robotics/ref/currenttime.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/importrobot.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.dubinsconnection.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/reedssheppconnection.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.dubinsconnection.connect.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.dubinspathsegment.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.reedsshepppathsegment.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.dubinspathsegment.interpolate.html
https://www.mathworks.com/help/releases/R2018b/robotics/ref/robotics.dubinspathsegment.show.html

R2018a

Version: 2.0

New Features

Bug Fixes

9

Manipulator Algorithm Blocks: Compute rigid body tree kinematics
and dynamics in Simulink
Simulink now supports dynamics and kinematics functions for rigid body trees. The following blocks
use an associated rigid body tree model, specified as a RigidBodyTree object, to compute the
kinematic or dynamic values for the robot:

• Inverse Dynamics: Required joint torques for given motion
• Forward Dynamics: Joint accelerations given joint torques and states
• Get Transform: Get transform between body frames
• Get Jacobian: Geometric Jacobian for robot configuration
• Gravity Torque: Joint torques that compensate for gravity
• Joint Space Mass Matrix: Joint-space mass matrix
• Velocity Product Torque: Joint torques that cancel velocity-induced forces

Lidar-Based SLAM: Localize robots and build map environments using
lidar sensors
The LidarSLAM class uses lidar sensor data and robot poses to simultaneously localize the robot and
build a map. The class uses an underlying PoseGraph class that contains pose estimates for lidar
scan readings. Lidar scans are incrementally added to the lidarScan object. The object detects loop
closures and optimizes pose graphs as scans are added to the map. A grid-based, scan-matching
algorithm determines placement in the map and detects loop closures.

Pose Graph Data Structure and Optimization: Represent and optimize
2-D and 3-D pose graphs
The PoseGraph and PoseGraph3D classes store pose graph data with pose estimates and
information matrices to specify the uncertainty. The data is represented as nodes and edges
connecting the different poses to draw out a robot trajectory. Nodes represent the pose estimates,
and edges contain the relative pose differences between nodes and information matrices as edge
constraints. Loop closure edges link existing nodes together as a relative pose difference.

The optimizePoseGraph function optimizes the entire graph using the edge constraints. The
function attempts to balance the relative poses and their edge constraints across the whole graph.
The option to ignore specific loop closures is also available.

The LidarSLAM class uses the 2-D PoseGraph class for simultaneous localization and mapping
based on lidar scan data.

3-D Occupancy Maps: Map 3-D environments using efficient octree
data structure
The OccupancyMap3D class supports the mapping of 3-D environments using probabilities to
represent occupancy of locations. The class stores the occupancy map using an efficient octree
structure to minimize data storage and dynamically prunes the tree appropriately. Sensor
observations are added as point clouds using insertPointCloud to incrementally build a map that
you can show in a figure. Also, you can inflate the map for obstacle avoidance and navigation.

R2018a

9-2

https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/inversedynamics.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/forwarddynamics.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/gettransformblock.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/getjacobian.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/gravitytorque.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/jointspacemassmatrix.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/velocityproducttorque.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.lidarslam-class.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.posegraph.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/lidarscan.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.posegraph.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.posegraph3d.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/optimizeposegraph.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.lidarslam-class.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.posegraph.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.occupancymap3d-class.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.occupancymap3d.insertpointcloud.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.occupancymap3d.show.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/robotics.occupancymap3d.inflate.html

Enhanced Performance for rosbag Logfiles: Load rosbags faster and
extract message data as structures
Performance improvements for reading rosbags enable faster load times using the rosbag function.
ROS messages can now be returned as a cell array of structures instead of ROS message objects
using readMessages, which allows for easier access of fields in the message and direct access to
custom message data:

bag = rosbag('ros_turtlesim.bag');
msgStructs = readMessages(bSel,'DataFormat','struct');

The getTransform and canTransform functions now support accessing transformations from
rosbags. You can also query statistics about the rosbag using rosbag info fileName.

9-3

https://www.mathworks.com/help/releases/R2018a/robotics/ref/rosbag.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/readmessages.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/gettransform.html
https://www.mathworks.com/help/releases/R2018a/robotics/ref/cantransform.html

R2017b

Version: 1.5

New Features

Bug Fixes

10

RigidBodyTree Visualization Improvements: Attach mesh files and
inspect individual bodies in a MATLAB figure
The robotics.RigidBodyTree class's show method can now display visual meshes in a figure
window. addVisual can assign an individual mesh file (.stl) to a rigid body a mesh file, or you can
use importrobot with a Unified Robotics Description Format (URDF) file that has mesh files
associated with bodies.

Other improvements to the visualization include inspection of individual body properties and toggling
of individual visual elements of the rigid body tree using mouse interaction.

Coordinate Transformation Conversion Block: Convert between
coordinate system representations in Simulink
You can now convert between different coordinate system representations using the Coordinate
Transformation Conversion block. The supported representations are:

• Axis-Angle (AxAng) – [x y z theta]
• Euler Angles (Eul) – [z y x], [z y z], or [x y z]
• Homogeneous Transformation (TForm) – 4-by-4 matrix
• Quaternion (Quat) – [w x y z]
• Rotation Matrix (RotM) – 3-by-3 matrix
• Translation Vector (TrVec) – [x y z]

For more information about the different coordinate transformation representations and the
equivalent MATLAB functions, see Coordinate System Transformations.

ROS Image and Point Cloud Blocks: Convert ROS messages to nonbus
signals in Simulink
You can now use Robotics System Toolbox to convert Robot Operating System (ROS) Image,
CompressedImage, and PointCloud2 messages to nonbus signals in Simulink. The image or point
cloud data are output as an array. Subscribe to a ROS message using Subscribe and feed the output
bus to the Read Image or Read Point Cloud block to convert the message to an array signal. You can
configure the block from a topic on a live ROS network or specify message parameters manually.

Lidar Sensor Object: Store and use lidar scan data
The lidarScan object can store data from a lidar (light detection and ranging) scan. A lidar scan,
also called a laser scan, contains ranges and angles from a sensor to measure and map your
environment. This object contains sensor information and the data collected from an individual scan.
You can use this object with other Robotics System Toolbox functionality that previously used ranges
and angles as inputs:

• matchScans
• transformScan
• robotics.MonteCarloLocalization

R2017b

10-2

https://www.mathworks.com/help/releases/R2017b/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/robotics.rigidbodytree.show.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/importrobot.html
https://www.mathworks.com/help/releases/R2017b/robotics/coordinate-system-transformations.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/image.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/compressedimage.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/pointcloud2.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/subscribe.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/matchscans.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/transformscan.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/robotics.montecarlolocalization-system-object.html

• robotics.VectorFieldHistogram
• robotics.OccupancyGrid.insertRay

You can also convert LaserScan ROS messages to the lidarScan object.

Scan Matching: New trust-region solver and code generation support
You can now use the 'trust-region' solver for the matchScans function. This solver does not
require an Optimization Toolbox™ license and replaces the 'fminunc' solver as the default. Code
generation for the 'trust-region' solver with MATLAB Coder™ is now available as well.

To use a specific algorithm, specify the 'SolverAlgorithm' name-value pair:

pose = matchScans(___ ,'SolverAlgorithm','trust-region')

10-3

https://www.mathworks.com/help/releases/R2017b/robotics/ref/robotics.vectorfieldhistogram-system-object.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/robotics.occupancygrid.insertray.html
https://www.mathworks.com/help/releases/R2017b/robotics/ref/matchscans.html

R2017a

Version: 1.4

New Features

Bug Fixes

11

External Mode Support: Tune parameters and view signal values of
deployed ROS nodes over TCP/IP (with Simulink Coder)
You can now use external mode with your deployed ROS nodes. External mode enables you to tune
parameters and log signals while code is running on the target hardware. You must have Simulink
Coder installed.

To deploy a standalone ROS node, see Generate a Standalone ROS Node from Simulink.

To use external mode, see Enable External Mode for Robotics System Toolbox Models

Dynamics for Robot Manipulators: Solve inverse and forward
dynamics for RigidBodyTree objects
The RigidBodyTree class provides dynamics information for robot manipulators. For each
RigidBody object, you can specify the following properties:

• Mass — Total mass of rigid body
• CenterOfMass — Location of body’s center of mass in the body frame
• Intertia — Independent elements of the inertia tensor in the body frame

You can also specify the Gravity property for the entire RigidBodyTree object.

New object functions are available for solving inverse and forward dynamics and for calculating other
relevant values for the robot model:

• forwardDynamics — Compute the resulting joint accelerations for given joint torques, joint
positions, and velocities. You can also specify external forces to the robot model by using
externalForce.

• inverseDyanmics — Compute the required joint torques for given joint positions, velocities, and
accelerations (robot motion). You can also specify external forces on the robot model.

• externalForce — Create external forces to apply to a robot model. This function creates a
matrix that forwardDyanmics and inverseDynamics use as an input.

• massMatrix — Compute the joint-space mass matrix for a certain robot configuration.
• velocityProduct — Compute the joint torques that compensate for Coriolis and centrifugal

terms for given joint positions and velocities.
• gravityTorque — Compute the joint torques required to compensate for gravity for a certain

robot configuration.
• centerOfMass — Compute the center of mass position and center of mass Jacobian for a certain

robot configuration in the base frame.

Generalized Inverse Kinematics: Solve multiconstrained inverse
kinematics for robot manipulators
Find a robot configuration on a RigidBodyTree model given one or more constraints. The
InverseKinematics class previously supported a single end-effector pose constraint. The
GeneralizedInverseKinematics class supports multiple constraints with different types.

R2017a

11-2

https://www.mathworks.com/help/releases/R2017a/robotics/examples/generate-a-standalone-ros-node-from-simulink.html
https://www.mathworks.com/help/releases/R2017a/robotics/ug/enable-external-mode-forrobotics-system-toolbox-models.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbody-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree.forwarddynamics.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree.inversedynamics.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree.externalforce.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree.massmatrix.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree.velocityproduct.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree.gravitytorque.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree.centerofmass.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.inversekinematics-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.generalizedinversekinematics-class.html

Specify constraint types when creating the object, and specify the constraint parameters when calling
the object. You can create constraint inputs from these classes:

• AimingConstraint
• CartesianBounds
• JointPositionBounds
• OrientationTarget
• PoseTarget
• PositionTarget

URDF File Importer: Import URDF robot descriptions as a
RigidBodyTree object
You can now import rigid body tree models from the Unified Robot Description Format (URDF) robot
description using importrobot. The function parses the URDF information and returns a
RigidBodytree object.

Scan Matching: Calculate pose difference between laser scans
Use the matchScans function to calculate the pose difference between two laser scans. This pose
difference, given as [x y theta], is used to correlate scans together and transform them into the
same coordinate frame. To transform laser scans based on this pose difference, use the
transformScan function.

Code Generation for RigidBodyTree objects: Generate code with robot
manipulator data structures
Code generation with MATLAB Coder is now available for RigidBodyTree objects. You can generate
code for all inverse and forward dynamics algorithms, but not for the show and showdetails
methods.

rosparam Simplified Commands: Modify ROS parameters using a
simplified interface without creating a ParameterTree object
You can now set, get, list, and delete ROS parameters directly using the rosparam function.
Previously, you had to create a ROS ParameterTree object to modify parameter values. rosparam has
simplified commands that mimic ROS behavior. For example, to set the '/param_value' ROS
parameter to the value, 42.15, use:

rosparam set /param_value 42.15

11-3

https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.aimingconstraint-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.cartesianbounds-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.jointpositionbounds-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.orientationtarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.posetarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.positiontarget-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/importrobot.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/matchscans.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/rosparam.html
https://www.mathworks.com/help/releases/R2017a/robotics/ref/parametertree-object.html

R2016b

Version: 1.3

New Features

Bug Fixes

Version History

12

Robotic Manipulator Algorithms: Represent robot manipulators using
a rigid body tree and calculate forward and inverse kinematics
The robotics.RigidBodyTree class enables you to build kinematic chains or trees using rigid
bodies to represent physical robots. You can add or modify bodies on a structure, specify joint limits,
and replace bodies or joints. In addition, you can use forward kinematics to get transformations
between two body frames and compute geometric Jacobians for specified end effectors for a given
robot configuration.

Inverse kinematics is available in the robotics.InverseKinematics class. Use inverse kinematics
to calculate corresponding joint angles for desired end-effector positions.

Automated Deployment of ROS Nodes: Automatically deploy ROS
nodes to target hardware using Simulink Coder
You can now automatically deploy and run ROS nodes using Simulink Coder. Create a Simulink model
using Robotics System Toolbox blocks and deploy it to your target Linux device that has ROS
installed. You can use the rosdevice object to connect to the target device and run or stop the
deployed ROS nodes.

For more information, see Generate a Standalone ROS Node from Simulink®.

Occupancy Grid Class: Build a robot environment using a 2-D
occupancy map with probabilistic values
The robotics.OccupancyGrid class enables you to create 2-D occupancy maps using probabilistic
values. You can incorporate probabilistic sensor information using Bayes’ rule. Also, you can use the
occupancy grid with the robotics.PRM and robotics.MonteCarloLocalization classes for
path planning and localization.

Mobile Robot Algorithm Blocks: Perform obstacle avoidance and path
following in Simulink
You can now use the Vector Field Histogram and Pure Pursuit algorithms with Simulink. The Pure
Pursuit block outputs a target direction, which you can feed directly into the Vector Field Histogram
block to perform obstacle avoidance with path following.

ROS Action Client: Send action goals via a ROS network and get
feedback on their execution
By setting up a simple action client using the rosactionclient function, you can now perform
predefined actions that are available on the ROS network. Once an action is triggered, the client
receives asynchronous feedback about a specified goal and can preempt the execution of goals on the
server.

Buffered ROS tf2 Transformations: Access time-buffered
transformations from the ROS transformation tree
The ROS transformation tree now supports time-buffered transformation. By default, the
TransformationTree object has a time buffer of 10 seconds. After creating a transformation tree

R2016b

12-2

https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.rigidbodytree-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.inversekinematics-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/examples/generate-a-standalone-ros-node-from-simulink.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.occupancygrid-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.prm-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.montecarlolocalization-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/purepursuit.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/purepursuit.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/vectorfieldhistogram.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/rosactionclient.html

using rostf, transformations are saved based on the buffer time. You can call getTransform or
transform to access and apply the transformations at a specified source time. A new function,
canTransform, enables you to check if the transformation is available.

Version History
waitForTransform will be removed in a future release. Use getTransform with a specified
timeout instead. To wait indefinitely, specify timeout as inf.

The behavior of getTransform will change in a future release. The function will no longer return an
empty transform when the transform is unavailable and no sourcetime is specified. If
getTransform waits for the specified timeout period and the transform is still not available, the
function returns an error. The timeout period is 0 by default.

Odometry Motion Model Class: Predict poses for a differential drive
robot
The robotics.OdometryMotionModel class contains the equations of motion that govern a
differential drive robot. The odometry motion model predicts the motion of a robot based on previous
poses and noise parameters. You can tune the Noise property and see the effect on particle
distributions using the showNoiseDistribution function. You can also use this motion model with
robotics.MonteCarloLocalization to localize robots in a known environment.

ROS Time and Duration: Use mathematical operations on ROS time
and duration objects
In the rostime function, you can now specify second and nanosecond scalar inputs when creating a
ROS Time message object. You can also use the new rosduration function to create a ROS
Duration message object. Both message types support mathematical operations and comparisons.
For example:

Create a ROS Time and Duration object and add them together. Compare the two Time objects.

time = rostime(5.54);
duration = rosduration(2);
time2 = time + duration

time2 =

 ROS Time with properties:

 Sec: 7
 Nsec: 540000000

time2 <= time

ans =

 0

12-3

https://www.mathworks.com/help/releases/R2016b/robotics/ref/rostf.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/gettransform.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/transform.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/cantransform.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/gettransform.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.odometrymotionmodel-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.montecarlolocalization-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/rostime.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/rosduration.html

Code Generation for Robotics Algorithms: Generate code for select
algorithms
Code generation with MATLAB Coder is now available for the following algorithms:

• robotics.BinaryOccupancyGrid
• robotics.OccupancyGrid
• robotics.OdometryMotionModel

• robotics.PRM — The map input must be specified on creation of the PRM object.
• robotics.PurePursuit

For a full list of code generation support for Robotics System Toolbox, see Code Generation.

R2016b

12-4

https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.binaryoccupancygrid-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.occupancygrid-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.odometrymotionmodel-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.prm-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/ref/robotics.purepursuit-class.html
https://www.mathworks.com/help/releases/R2016b/robotics/code-generation-and-deployment.html

R2016a

Version: 1.2

New Features

Version History

13

Monte Carlo Localization Algorithm: Estimate robot location in a
known map
Monte Carlo Localization utilizes a particle filter to localize a robot in a known environment. You can
supply a BinaryOccupancyGrid object of your map and range sensor data from the robot to the
robotics.MonteCarloLocalization object to estimate the pose (location and orientation) of the
robot. You have the option of using global localization or specifying an initial pose to improve
performance. As sensor data is supplied to the algorithm, particles converge on the best estimate of
the robot location.

Particle Filter Algorithm: Estimate state for nonlinear systems
The robotics.ParticleFilter class enables you to create a particle filter for state estimation.
The algorithm uses particles and sensor data to try to match the posterior distribution of the current
state. It first predicts the current state based on a given system model and then corrects the estimate
based on sensor data inputs. You can specify a fixed number of particles to use, number of state
variables to estimate, and your method for final estimation based on the particle weights. You can
customize your particle filter by giving a state transition function and measurement likelihood model
to match your system.

Fixed-Rate Execution: Run MATLAB code at a constant rate
Execute loops at a constant rate based off either your system time or ROS time. By creating a
robotics.Rate object, you can call waitfor to pause a loop until the next time step. This feature
ensures that loops are run at a fixed rate when accurate timing of commands is required.

You can also use rosrate to base timing off the current time published in a ROS network. Therefore,
messages and control commands can be published at a fixed rate to a ROS-enabled system.

Robotics System Toolbox Support Package for TurtleBot based Robots:
Connect to TurtleBot hardware
ROS Toolbox Support Package for TurtleBot®-Based Robots allows robotics researchers to acquire
sensor data from TurtleBot-based robots (either simulated or physical robots). You can use the data
for visualization and analysis, and send commands to control the robots.

String support for ROS parameters in Simulink
Support for using strings as ROS parameters is now available in Simulink. When using strings, they
must be cast as a uint8 array of ASCII values. See ROS String Parameters for more information.

String array support for ROS messages in Simulink
You can now use an array of strings when using the Publish, Subscribe, and Blank Message blocks to
create, send, and receive messages using a ROS network in Simulink.

R2016a

13-2

https://www.mathworks.com/help/releases/R2016a/robotics/ref/robotics.montecarlolocalization-class.html
https://www.mathworks.com/help/releases/R2016a/robotics/ref/robotics.particlefilter-class.html
https://www.mathworks.com/help/releases/R2016a/robotics/ref/robotics.rate-class.html
https://www.mathworks.com/help/releases/R2016a/robotics/ref/rosrate.html
https://www.mathworks.com/help/releases/R2016a/robotics/ug/ros-string-parameters.html
https://www.mathworks.com/help/releases/R2016a/robotics/ref/publish.html
https://www.mathworks.com/help/releases/R2016a/robotics/ref/subscribe.html
https://www.mathworks.com/help/releases/R2016a/robotics/ref/blankmessage.html

Code generation from Simulink using Simulink Coder
You can now generate standalone ROS nodes from Simulink models with just Simulink Coder. If you
have Embedded Coder®, you can customize the generated code with additional optimization,
readability, and code configuration options.

roboticsSupportPackages function replaced with roboticsAddons
The roboticsSupportPackages function is no longer available. Instead, use roboticsAddOns to
access Add-ons for Robotics System Toolbox.

13-3

https://www.mathworks.com/help/releases/R2016a/robotics/ref/roboticsaddons.html

R2015aSP1

Version: 1.0.1

Bug Fixes

14

R2015b

Version: 1.1

New Features

15

Vector Field Histogram Plus (VFH+) obstacle avoidance algorithm
The VFH+ obstacle avoidance algorithm is a reactive algorithm that calculates obstacle-free robot
movements using range sensor information. You can use this algorithm to have your robot avoid
unknown obstacles while driving through dynamic or partially known environments. See
robotics.VectorFieldHistogram for more information.

Access to ROS parameters from Simulink
Simulink workflows now support ROS parameters. You can get and set parameter values using the
new Get Parameter and Set Parameter blocks.

Code generation for coordinate transforms and select robotics
algorithms
For select Robotics System Toolbox algorithms, you can now generate C/C++ code using MATLAB
Coder. You can create MEX-files and shared libraries from your MATLAB application. These code
generation workflows are supported for the coordinate transformation functions (Coordinate System
Transformations), the VFH+ obstacle avoidance algorithm, and the Pure Pursuit controller algorithm
(robotics.PurePursuit). See Code Generation for more information.

R2015b

15-2

https://www.mathworks.com/help/releases/R2015b/robotics/ref/robotics.vectorfieldhistogram-class.html
https://www.mathworks.com/help/releases/R2015b/robotics/ref/getparameter.html
https://www.mathworks.com/help/releases/R2015b/robotics/ref/setparameter.html
https://www.mathworks.com/help/releases/R2015b/robotics/coordinate-system-transformations.html
https://www.mathworks.com/help/releases/R2015b/robotics/coordinate-system-transformations.html
https://www.mathworks.com/help/releases/R2015b/robotics/ref/robotics.purepursuit-class.html
https://www.mathworks.com/help/releases/R2015b/robotics/code-generation.html

R2015a

Version: 1.0

New Features

16

Path planning, path following, and map representation algorithms
The Robotics System Toolbox provides algorithms for path planning, path following, and map
representations. The support in this release includes classes for Binary Occupancy Grids,
Probabilistic Roadmaps (PRM), and a Pure Pursuit controller.

Functions for converting between different rotation and translation
representations
Coordinate system transformations are provided as functions for converting between many different
representations including quaternions, rotation matrices, homogeneous transformation matrices, and
Euler angles. Other functions are available for converting between radians and degrees and for angle
calculations. For more information, see Coordinate System Transformations.

Bidirectional communication with live ROS-enabled robots
Communication with ROS using publishers and subscribers is available in MATLAB and Simulink.
Many message types are readily supported. Robotics System Toolbox can also access ROS services,
the parameter server, and the tf transformation tree in MATLAB.

Interface to Gazebo and other ROS-enabled simulators
ROS-enabled simulators allow prototyping of algorithms and testing systems developed in MATLAB.
Connection to a Gazebo simulator is supported with an example interacting with the simulator shown
here: Reading Model and Simulation Properties from Gazebo.

Data import from rosbag log files
This release of the Robotics System Toolbox includes the ability to access rosbags, which are logfiles
from ROS. You can access whole log files or portions and manipulate the data as desired (see Working
with rosbag Logfiles).

ROS node generation from Simulink models (with Embedded Coder)
This release includes ROS node generation using Simulink. You can use Simulink to create models
that exchange messages with a ROS network. Using Embedded Coder, you can generate C++ code
for standalone ROS nodes from these models.

R2015a

16-2

https://www.mathworks.com/help/releases/R2015a/robotics/coordinate-system-transformations.html
https://www.mathworks.com/help/releases/R2015a/robotics/examples/reading-model-and-simulation-properties-from-gazebo.html
https://www.mathworks.com/help/releases/R2015a/robotics/examples/working-with-rosbag-logfiles.html
https://www.mathworks.com/help/releases/R2015a/robotics/examples/working-with-rosbag-logfiles.html

	R2022a
	Robot Scenarios and Sensor Models: Author robot scenarios and simulate sensor readings for robotics applications
	Inverse Kinematics Designer: Design inverse kinematics solvers, configurations, and waypoints
	Convert Collision Mesh: Convert primitive collision objects to collision mesh
	Kinematic Constraints: Additional Generalized Inverse Kinematics Constraints
	INS Sensor Model: Simulate inertial navigation and GPS readings
	GPS Sensor Model: Simulate GPS receiver readings
	Trajectory and Waypoint Following Algorithm: Use built-in algorithm to generate trajectories and control commands for robots
	Transform Tree Object: Define coordinate frames and relative transformations
	Point Cloud Object: Store 3-D point clouds
	Trajectory Generation Blocks: Create minimum jerk and minimum snap polynomial trajectories with Simulink
	Commercial Robot Models: Universal Robots E-Series models introduced to the library of robot models
	Simulation 3-D Environment Upgrade: Gazebo 11 support
	New Examples

	R2021b
	State Space and State Validation for Robot Manipulator Models
	Ignore Self Collisions for Manipulator RRT Path Planning
	Minimum Jerk and Snap Polynomial Trajectories
	Simulation Description Format (SDF) Support
	COLLADA Mesh Support
	Load Robot Function Update

	R2021a
	Workspace Regions For Motion Planning: Specify a workspace region to sample end-effector poses for path planning
	Gazebo Co-Simulation in MATLAB: Access and modify Gazebo model parameters
	Educational Robot Model: Additional rigid body tree robot model for manipulator introduced to the library of robot models
	Rigid Body Tree Visualization Improvements
	Rigid Body Tree Function Generation

	R2020b
	RRT Planner for Manipulators: Plan collision-free motion for rigid body tree robot models
	Collision Checking for Robot Meshes: Add collision meshes to rigid body tree models and check collisions for robot configurations
	Custom Messages with Gazebo: Publish and subscribe to custom message types in a Gazebo simulation
	Joint and Link States in Gazebo: Send and receive messages for robot joint and link states in a Gazebo Simulation
	Analytical Inverse Kinematics: Generate functions for inverse kinematics solutions using closed-form solutions
	Educational and Commercial Robot Models: Additional rigid body tree robot models for manipulators and mobile robots introduced to the library of robot models
	Robotics System Toolbox UAV Libraryadd-on is now the UAV Toolbox
	Robotics System Toolbox Support Package for Manipulators Add-on

	R2020a
	Interactive Robot Visualization: Manipulate rigid body tree models with visual meshes and perform inverse kinematics for target bodies
	Commercial Robot Models: Load additional rigidBodyTree robot models for manipulators and mobile robots added to our library of existing models
	Code Generation for Collision Checking: Generate C/C++ code using the checkCollision function and collision geometries
	Simscape Multibody Model Parameters: Import models with initial position and joint limits

	R2019b
	Gazebo Co-simulation: Perform time-synchronized simulation of Gazebo with Simulink
	Robot Motion Modeling and Simulation: Simulate mobile robot kinematics and closed-loop manipulator dynamics
	Collision Checking: Define collision shapes and detect collisions between mesh geometries
	Commercial Robot Models: Use a provided library of rigid body robot models to quickly model your robot applications
	Robot Application Examples: Get started with reference examples for pick-and-place robots and warehouse mobile robots
	Robotics System Toolbox Support Package for Turtlebot-Based Robots functionality has moved
	Robotics System Toolbox has transitioned into Robotics System Toolbox, Navigation Toolbox, and ROS Toolbox

	R2019a
	SLAM Map Builder Sessions: Save and load app sessions
	MAVLink Protocol Support: Communicate with UAVs using MAVLink messages and load log files
	Trajectory Generation: Create piecewise polynomials, trapezoidal velocity profiles, B-splines, and task-space interpolation
	Model Reference Support for ROS: Use model reference in models with ROS Blocks
	Orbit Follower for UAVs: Follow a circular path around a point of interest
	Code Generation for SLAM: Generate code using LidarSLAM, PoseGraph, and PoseGraph3D objects

	R2018b
	SLAM Map Builder App: Build and tune a 2-D grid map with lidar-based SLAM
	UAV Algorithms: Create UAV guidance models and 3-D path following for fixed-wing and multirotor UAVs
	Read Data Block: Play back data from a rosbag logfile in Simulink
	Inverse Kinematics Block: Calculate joint configurations for a desired end-effector pose in Simulink
	ROS Service and Current Time Blocks: Call ROS services and get the current ROS time in Simulink
	Simscape Multibody Data Exchange: Use importrobot to import Simscape Multibody models to a RigidBodyTree object.
	Ground Vehicle Motion Primitives: Generate paths using Dubins, Reeds-Shepp, and straight-line connections

	R2018a
	Manipulator Algorithm Blocks: Compute rigid body tree kinematics and dynamics in Simulink
	Lidar-Based SLAM: Localize robots and build map environments using lidar sensors
	Pose Graph Data Structure and Optimization: Represent and optimize 2-D and 3-D pose graphs
	3-D Occupancy Maps: Map 3-D environments using efficient octree data structure
	Enhanced Performance for rosbag Logfiles: Load rosbags faster and extract message data as structures

	R2017b
	RigidBodyTree Visualization Improvements: Attach mesh files and inspect individual bodies in a MATLAB figure
	Coordinate Transformation Conversion Block: Convert between coordinate system representations in Simulink
	ROS Image and Point Cloud Blocks: Convert ROS messages to nonbus signals in Simulink
	Lidar Sensor Object: Store and use lidar scan data
	Scan Matching: New trust-region solver and code generation support

	R2017a
	External Mode Support: Tune parameters and view signal values of deployed ROS nodes over TCP/IP (with Simulink Coder)
	Dynamics for Robot Manipulators: Solve inverse and forward dynamics for RigidBodyTree objects
	Generalized Inverse Kinematics: Solve multiconstrained inverse kinematics for robot manipulators
	URDF File Importer: Import URDF robot descriptions as a RigidBodyTree object
	Scan Matching: Calculate pose difference between laser scans
	Code Generation for RigidBodyTree objects: Generate code with robot manipulator data structures
	rosparam Simplified Commands: Modify ROS parameters using a simplified interface without creating a ParameterTree object

	R2016b
	Robotic Manipulator Algorithms: Represent robot manipulators using a rigid body tree and calculate forward and inverse kinematics
	Automated Deployment of ROS Nodes: Automatically deploy ROS nodes to target hardware using Simulink Coder
	Occupancy Grid Class: Build a robot environment using a 2-D occupancy map with probabilistic values
	Mobile Robot Algorithm Blocks: Perform obstacle avoidance and path following in Simulink
	ROS Action Client: Send action goals via a ROS network and get feedback on their execution
	Buffered ROS tf2 Transformations: Access time-buffered transformations from the ROS transformation tree
	Odometry Motion Model Class: Predict poses for a differential drive robot
	ROS Time and Duration: Use mathematical operations on ROS time and duration objects
	Code Generation for Robotics Algorithms: Generate code for select algorithms

	R2016a
	Monte Carlo Localization Algorithm: Estimate robot location in a known map
	Particle Filter Algorithm: Estimate state for nonlinear systems
	Fixed-Rate Execution: Run MATLAB code at a constant rate
	Robotics System Toolbox Support Package for TurtleBot based Robots: Connect to TurtleBot hardware
	String support for ROS parameters in Simulink
	String array support for ROS messages in Simulink
	Code generation from Simulink using Simulink Coder
	roboticsSupportPackages function replaced with roboticsAddons

	R2015aSP1
	R2015b
	Vector Field Histogram Plus (VFH+) obstacle avoidance algorithm
	Access to ROS parameters from Simulink
	Code generation for coordinate transforms and select robotics algorithms

	R2015a
	Path planning, path following, and map representation algorithms
	Functions for converting between different rotation and translation representations
	Bidirectional communication with live ROS-enabled robots
	Interface to Gazebo and other ROS-enabled simulators
	Data import from rosbag log files
	ROS node generation from Simulink models (with Embedded Coder)

